img

Data Science

Data Science

| Author Level 1

0.0
(0) 0 Students

What You Will Learn

  • Data Science

By the end of a data science course, you'll be equipped with a powerful set of skills and knowledge to analyze data, solve problems. This can open doors to various exciting careers in fields like data analyst, data scientist, machine learning engineer, and business intelligence specialist.Data Manipulation and Analysis: Learning how to collect, clean, and preprocess data, as well as techniques for exploratory data analysis to understand the characteristics and patterns within the data.Learning how to effectively visualize data using tools and libraries, and how to create informative and insightful visual representations of data.Programming Languages and Tools: Gaining proficiency in programming languages commonly used in data science, such as Python or R, as well as familiarity with data science libraries and tools like pandas, NumPy, scikit-learn, and more.Big Data and Distributed Computing: Understanding the principles of big data processing, distributed computing frameworks like Hadoop and Spark, and techniques for working with large-scale datasets.Data Mining and Text Analysis: Exploring techniques for extracting patterns and insights from large datasets, including text mining, sentiment analysis, and natural language processing.

Course Curriculum

BASIC PYTHON

Section1: Kick-Starting Python

·         Introduction of Python Language.

·         Distribution of Python Software.

 

Section2: Python in real-time industry

·        Taste of online IDEs

 

Section3: Python Language Fundamentals

·         Tokens & Syntax.

·         Numbers & variables.

·         Simple Input and Output.

·         Bare bones of the program

 

Section4: Data Handling

·         Python Collections

·         Data types.

·         Sorting

 

Section5: Control flow in Python coding

·        Conditional Decision-making statements.

·        Looping Statements

 

Section6: Errors and Exceptions

·        Errors & Termination.

·        Exception Handling.

 

ADVANCE PYTHON (Advance Python Concept)

Section7: Working with Functions, Libraries & Modules

·            Built-in/User-defined Functions.

·            Recursive & lambda Functions.

·            Libraries and Python Modules

 

Section8: File handling in Python

·            Way around Data files

 

Section9: OOPs in Python

·            Python Class & Objects.

·            Encapsulation, Abstraction, Polymorphism, and Inheritance.

 

Section10: Database communication

·            Database Access

 

Section11: Miscellaneous topics

·            Other Remaining topics

 

 

Advance Python Course is Project Included

 

 

PROFESSIONAL PYTHON (Professional Python for Data Engineers)

 

Section12: Introduction to Python Pro(TAMING THE DATA)

·        Understanding Data.

·        Playing with data.

·        Introduction to Python based ML/DL and Data analytics.

 

Section13: Role of Statistics in Data Science

·        Intro to statistics, Central tendency, standard deviation, variance

·        Inferential Statistics, Types of Probability Distribution

 

Section14: Data Science 101

·        House warming to Arrays.

·        Analysis and Manipulation of data.

·        Working with plots and charts

·        Hands on practice

·        Exploratory Data Analysis

 

 

 

MACHINE LEARNING(Advanced Coding for Machine Learning Professional)

Section15: Diving Deep in to Science of ML

·         Introduction to ML

        Programming with Python

        NumPy with Python

       Learning Pandas for Data Analysis

        Understanding of Matplotl ib Programming Library-

       Glanceat seaborn for data visualizations

·                 Understanding Machine Learning with SciKit Learn

·                 Different types of ML:

       Supervised Machine Learning

        Classification

       Random Forest Algorithm

      Decision Tree Algorithm

      Naive Bayes

      Logistic Regression Algorithm

      K-Nearest Neighbor

      Natural Language Processing

      Support Vector Machine Algorithm

 

        Regression

      Simple Linear Regression Algorithm

      Lasso Regression

      Ridge Regression

      Multivariate Regression Algorithm

      Decision Tree Algorithm

      Lasso Regression

 

       Unsupervised Machine Learning

       Clustering

      K-Means Clustering algorithm

      Hierarchal clustering

      Mean-shift algorithm

      DBSCAN Algorithm

      Principal Component Analysis

      Independent Component Analysis

 

        Association

      Some popular algorithms of Association rule learning are Apriori Algorithm, Eclat, FP-growth algorithm

       Semi-Supervised Machine Learning

       Reinforcement Learning

 

·                 Model Deployment

·                 Live Industrial & ResearchProjects on various ML Algorithms

 

 

 

DEEP LEARNING{Advanced Coding 2.0 for Data Science Learning Professional}

Section16

·Introduction to DL

·Machine Learning and Neurons

            Machine Learning

            Neuro

            Model Learning

            Making Predictions

            Saving and Loading Model

            Introduction to Keras

·Feed forward Artificial Neural Network

            Artificial Neural Networks

            Forward Propagation

            Activation Function

            Multiclass Classification

            Working with images

            NN for Classification

            NN for regression

·Convolution Neural Networks

            Convolution

            CNN Introduction

            Working with examples using CNN

·Recurrent Neural Networks

            Sequence Data

            Forecasting

            Time Series Prediction

            RNN introduction

            RNN on Time Series

            RNN for Image classification

            Intro to LSTM

·Working on Recommender system

·Project-Transfer Learning

·Generative Adversarial Networks

            GAN introduction

            Creating GAN

·Working with Tensor flow

·Loss Function in deep learning

·     Deployment

            Create a model

            Model Prediction function

            Running with basic flask application

·     Live Industrial & Research Projects on various DL Algorithm

img
No Discussion Found

0.0

0 Reviews

5
0
4
0
3
0
2
0
1
0
Meet Your Instructor

Instructor
0.0 Rating
8 Students
Author Level 1
22 Courses
About Instructor

Laudantium iure aut

video

Free

  • Course Duration
    4 Months
  • Course Level
    Higher
  • Student Enrolled
    0
  • Language
    English
This Course Includes
  • 10 min 0 sec Video Lectures
  • 0 Quizzes
  • 0 Assignments
  • 0 Downloadable Resources
  • Full Lifetime Access
  • Certificate Of Completion